A 3-Dimensional Stacked Metamaterial Arrays for Electromagnetic Energy Harvesting
نویسندگان
چکیده
We present the design of 3-D metamaterial stacked arrays for efficient conversion of electromagnetic waves energy into AC. The design consists of several vertically stacked arrays where each array is comprised of multiple Split-Ring Resonators. The achieved conversion efficiency is validated by calculating the power dissipated in a resistive load connected across the gap of each resonator. Numerical simulations show that using stacked arrays can significantly improve the efficiency of the harvesting system in comparison to a flat 2-D array. In fact, the per-unit-area efficiency of the 3-D design can reach up to 4.8 times the case of the 2-D array. Without loss of generalization, the designs presented in this work considered an operating frequency of 5.8GHz.
منابع مشابه
Split-Ring Resonator Arrays for Electromagnetic Energy Harvesting
By virtue of their ability to resonate at a wavelength much larger than the maximum dimension, Split-Ring Resonator (SRR) cells can be densely stacked to create energy harvesting arrays having per-unit-area power efficiency higher than a single SRR cell. While the concept of using metamaterial particles for electromagnetic energy harvesting had been demonstrated in our earlier work, the overall...
متن کاملMetamaterials for Remote Generation of Spatially Controllable Two Dimensional Array of Microplasma
Since the initial demonstration of negative refraction and cloaking using metamaterials, there has been enormous interest and progress in making practical devices based on metamaterials such as electrically small antennas, absorbers, modulators, detectors etc that span over a wide range of electromagnetic spectrum covering microwave, terahertz, infrared (IR) and optical wavelengths. We present ...
متن کاملMetamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting
Enhancement of structure-borne wave energy harvesting is investigated by exploiting metamaterial-based and metamaterial-inspired electroelastic systems. The concepts of wave focusing, localization, and funneling are leveraged to establish novel metamaterial energy harvester (MEH) configurations. The MEH systems transform the incoming structure-borne wave energy into electrical energy by couplin...
متن کاملPerturbative Approach to Calculating the Correlation Function of bi-isotropic Metamaterials
A bi-isotropic magneto-electric metamaterials is modeled by two independent reservoirs. The reservoirs contain a continuum of three dimensional harmonic oscillators, which describe polarizability and magnetizability of the medium. The paper aimed to investigate the effect of electromagnetic field on bi-isotropic. Starting with a total Lagrangian and using Euler-Lagrange equation, researcher cou...
متن کاملMetamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets.
Huygens' principle is a well-known concept in electromagnetics that dates back to 1690. Here, it is applied to develop designer surfaces that provide extreme control of electromagnetic wave fronts across electrically thin layers. These reflectionless surfaces, referred to as metamaterial Huygens' surfaces, provide new beam shaping, steering, and focusing capabilities. The metamaterial Huygens' ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014